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Abstract

In an extension of previous studies of ours a normal mode analysis is per-
formed for a 4096 atom structural model, of cubic cell size L=44A4, of amor-
phous silicon within the Stillinger Weber potential. The peaks in dynamic
structure factor quantities Sz, (Q,w) and Sr(Q,w), where L and T refer to
projections of eigenvectors onto vectors parallel and perpendicular to Q, are
compared with use of Lorentzian fits. An attempt is made to estimate Toffe-
Regel crossover frequencies. In agreement with a previous estimate for the
commencement of diffusons a frequency corresponding to 17 meV is found
for the transverse-like loffe-Regel crossover. Sy for fixed Q, is found to be
reasonably Lorentzian up to Q=3 (27/L). S; functions which have peak-
height frequencies above the transverse acoustic maximum frequency wr maq
are strongly skewed towards higher frequencies. The Lorentzian breadths
above and below wr ;4 are roughly of the forms Q? and Q*, respectively.
Finally, a small positive dispersion describes the peak positions of Sy, in

qualitative agreement with related studies on other model glassy systems.
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I. INTRODUCTION

The dynamical properties of glasses at frequencies in the sub- and low-terahertz region
have been investigated intensively. Both computer simulation [1-4] and experiment [1,5]
suggest that elastic scattering gives rise to a Q? law for the breadths of phonon peaks in
the dynamic structure factor as well as in a generalized quantity based on transverse po-
larization projections of normal mode eigenvectors. This law seems to be clearly observed
experimentally (longitudinal projected) only in the nanometer region, and computer simula-
tions have not been able to extend beyond that region. It is often assumed, e.g. [6,5], that at
sufficiently low Q a Q* Rayleigh elastic scattering law will prevail. But a different theoretical
approach indicates that the extension of the Q? elastic scattering law down to Q=0 [7] is
conceivable. In addition there has been considerable discussion about the spectral shapes of
the measured inelastic x-ray scattering for various glasses. Courtens et al. [5] argue for an
effective medium like formula, and show analyses of data that support that, whereas Ruocco
et al. argue for a Lorentzian behavior. In addition a hard sphere model calculation based
on mode coupling theory [8] has reproduced some of the qualitative experimental findings.

In previous numerical investigations we have discussed the vibrational normal modes
of amorphous silicon from the point of view of propogational and thermal conduction
properties. [9] In particular we have described the modes by considering the localization-
delocalization properties as well as phase coherency. The models indicate that both ordinary
propagating modes and resonance modes coexist in the same low frequency region, that there
exists delocalized but non propagating modes, and that localized modes exist at only the
top few percent of the spectrum. Allen and Fabian [10] have named the modes propagons,
diffusons and locons. In an earlier paper [4] we argued that our results did not imply the
presence of resonance modes in macroscopic samples, unless they contained sufficient struc-
tural inhomogeneities. Nevertheless there is still some question about whether or not the
Stillinger Weber potential leads to resonance modes in the absence of such inhomogeneities.

As done previously, we base our work on the Stillinger Weber potential. [11] Structural



models based on the WWW bond switching algorithm [12] were supplied by Wooten and
subsequently "relaxed” via the Stillinger Weber potential as first done by Broughton and
Li. [13]

II. FOURIER TRANSFORMS OF A FEW SELECTED EIGENVECTORS

Within our models the dynamic structure factor loses its phonon character at a frequency
where modes are still extended throughout the computational box. [9] We consider this to
be a well established result of present model calculations on several glassy systems. What
we consider here in more detail and with better statistics than previously obtained is the
extended and plane wave nature of the modes over the lower half of the frequency spectrum.

Before examining the dynamical structure factor it is instructive to consider C;; and

Ci2+C; 3, for a few selected modes, where

Cia =< ;ei(l).na,Qexp(iQ 1)) P> (1)
In Eq. 1 the brackets imply an average over all Q of fixed magnitude. (We also restrict
Q to be consistent with the periodic boundary conditions). Further, e; is the eigenvector
associated with the i’th normal mode, r; is an atomic position vector, and the n, q (a=1-3)
are orthogonal unit vectors parallel (¢ = 1) and perpendicular («=2,3) to Q. The modes
represented in Figs. 1 and 2 correspond to frequencies slightly less than and significantly
above wWrg maeg, respectively, where wra mq is defined as the frequency above which a Q
corresponding to transverse acoustic projection is not definable. In the vibrational density
of states, presented for our model in earlier papers, e.g. [4], this frequency occurs near the
lowest frequency peak height. The extremely broad distribution of the transverse Fourier
content shown in Fig. 1 of course implies wramee =~ 22.3 meV. Fig. 2 also illustrates
the idiosynchratic character of the individual modes, although variations among modes of
adjacent frequencies is smaller than that of the longitudinal projected quantities seen in the

figure. For the purpose of comparison we also present the static structure factor, F2, for our

model (Fig. 1).



III. RESULTS FOR DYNAMIC STRUCTURE FACTOR

The (intermediate) dynamic structure factor, S;,(Q,w), is defined as y°; C; 10 (w; —w) with
a similar expression involving the sum of two terms for S. In a previous paper [9] on a 1000
atom model of the same type as we employ here for 4096 atoms we plotted results for an Sy,
defined for individual Q’s, mainly along the 100 direction. It is therefore encouraging that
those results are consistent with the results to be given here. Previously we also reported
directionally averaged results for our 4096 atom model, but those corresponded only to
transverse projections of eigenvectors and to Q < 2.236 (Q is in units of 27 /L where L (=
44 A) is the size of the cubic spercell). [4]

First we give some results for the transverse projected dynamic structure factor to com-
plete our earlier study. Figure 3 shows only results higher in () than we considered before.
The dashed lines represent Lorentzian fits to the results and the inset gives the Lorenzian
peak position and HWHM as a function of Q. The dashed and dotted lines in the inset are
not fits to the present results but rather the formulas found to represent the earlier low Q
results. They show that a quadratic linewidth as a function of Q is an excellent representa-
tion of the results up to Q/Qe=0.45 and that negative dispersion is evident slightly beyond
Q/Qo=0.36 where Qq is the position of the first peak in the static structure factor. The
crossing of the two curves at w = 17meV is the loffe-Regel crossover (discussed in more
detail below) for transverse modes. This value is in excellent agreement with a previous
estimate for the onset of diffusons. [18]

Figure 4 gives the proper dynamic structure factor, i.e., the longitudinal projection, aside
from Debye Waller factor and non vibrational constants, for selected values of Q). There is a
dramatic change in the character of S(Q,w) at Q = 3.5 as seen in Fig.5, and figure 6 shows
results for Q> 3.5. The low Q results seem to be well represented by Lorentzians. This is
true for transverse projected results as well. [4] (On the other hand it is interesting to point
out that Lorentzians do not represent S(Q,w) for a similar structural model but with use of

a Keating potential model [14]). At Wramaez, “transverse mode” cutoff the peaks change in



character as they become clearly skewed to high frequencies.

The peak position corresponding to the Lorentzian fits displayed in the previous figures
are plotted in Fig. 7. (Also plotted are results for a few values of Q which we have not given
in any additional detail.) The straight line in Fig. 7 is a fit to the lowest four points. It is
given by the equation w = 7.13Q) where w is in meV and Q in 27/L. The corresponding sound
velocity is 7.59X10%m/s in excellent agreement with a determination of 7.64X10%m/s, quoted
in the second reference of [9] based on a determination of elastic constants for a 1000 atom
model using the method of long waves. [15]. There is clear evidence of a positive curvature
in the dispersion. Positive dispersion was also noticed in other simulational studies. [2,3]
In the present work, as well as possibly in others’, the onset of positive dispersion seems to
occur near the (transverse polarization) Ioffe-Regel crossover.

Just above wy ., We obtain a dramatic decrease in the above Lorentzian character
(propagon weight) as also seen in Fig. 7. We define propagon weight here as the fraction of
the total area under a fitted Lorentzian to the total area under S(Qw) which is a constant,
independent of Q, by virtue of the known sum rule. Of course this quantity should be less
than one even for highly propagating states because of the ”internal displacements” present
due to optic like mode-elastic wave harmonic interaction terms.

The Ioffe-Regel crossover has been considered for these systems with somewhat varying
definitions. In Fig. 8, e.g., we allude to the definition also used by Taraskin et al. [16] in
which the lifetime associated with phase decoherence is equated to the frequency. [17] The
frequency is greater than the HWHM of S(Q,w) for the plotted quantities, suggesting that
the Ioffe-Regel criterion for propagating states is satisfied. However, the fact that S(Q,w) is
greatly skewed suggests otherwise. The forms that approximate the low and high frequency
Lorentzian fits are T'/2 = 0.3Q?% and T'/2 = 0.002Q*, respectively, where the same units as
above are employed.

We do not show Sy for Q above 6.4, although we have performed calculations for Q=7
and Q=8 and find that a Lorentzian gives an extremely poor fit to the results. These Q’s

are beyond Qg/2, where Qg is the position of the first maximum in the structure factor.
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Fourier contents of modes are also indirectly related to the phase quotient definition, so that
as modes contain greater wave vector components beyond certain wave numbers they also
tend to yield negative phase quotients. Such a correlation is evident by comparing behavior
shown in Fig. 13 of Ref. [18] with results of the present investigation.

Fig. 2 illustrates that individual modes are sharp with respect to Q and longitudinal
acoustic polarization. But this sharpness is not inconsistent with the fact that S(Q,w) is
strongly skewed as a function of w, for higher frequency modes give broader F'T’s and are
denser in frequency space. In the context of the Kubo theory of thermal conductivity, the
diffusivity function is peaked in the ‘longitudinal acoustic’ frequency region [9,4] but the
contribution to the thermal conductivity from a given frequency region can be expected to

be smaller than what it would be if the modes were good propagating modes.

IV. CONCLUSIONS

We have performed a Fourier-like analysis of modes in a 4096 atom model to glean
information on the propagational nature of the modes in a continuing study of this basic
model. The nature of the longitudinal projected quantities is similar to that in other studies
in some respects and dissimilar in others. As in other studies we find that there is a positive
dispersion of the longitudinal branch initially and then there is the usual negative dispersion
at higher frequencies. The onset of this positive dispersion seems to be approximately
associated with the Ioffe-Regel crossover for transverse polarization. Such a correspondence
has not been noted in studies on other models, and it would be interesting to explore this
point further. Apparently unlike other simulations, the Lorentzian weight is greatly reduced
and yet the peaks are in some sense sharpened as one goes through this maximum transverse
acoustic frequency. We have determined a clear Ioffe-Regel crossover of 17 meV, based on
the transverse projected quantities, and probably the Ioffe-Regel crossover for longitudinal

polarization should be taken to be approximately 25 meV.
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VI. FIGURE CAPTIONS

Fig. 1. Longitudinal and Transverse Fourier components for mode at w=22.3 meV. Also
shown is the static structure factor, F? in arbitrary units. @ is in units of 27 /L in this and
all succeeding figures.

Fig. 2. Longitudinal and Transverse Fourier components for modes at 38.3 and 38.7
meV (smaller height of longitudinal peak). T curves are shifted up by 0.3.

Fig. 3. Transverse dynamic structure factor results (solid) and Lorentzian fits (dashed).
Inset shows values of peak heights and HWHM of Lorentzian fits. The values of Q for the
peaks are 4, 5, 6, and 6.4.

Fig. 4. S;(Quw) for Q=(l,m,n) averaged over all permutations of 1,mn. Dashed curves
are Lorentzian fits.

Fig. 5. S;(Q,w) for various values of Q. Dashed curves are Lorentzian fits. Fit to Q=3.6
result is made only for limited (right) portion including the peak height.

Fig. 6. Same as Fig. 5 caption.

Fig. 7. Phonon energy (stars) and propagon weight (plusses). The propagon weight is
defined as the area under the Lorentzian fits to the curves in Figs. 4-6. The phonon energies
are also taken from those Lorentzian fits. The dotted line is a fit to v, Q at low Q.

Fig. 8. The halfwidths (plusses) of the Lorentzian fits of the Figs. 4-6. For comparison
based on a definition of the Ioffe-Regel crossover the phonon energies are also given. The
straight line going through the latter curve corresponds to v;(Q and the other two straight
lines are Q? and Q*, where the former is seen to approximate the low Q results and the

latter the high Q results.
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